A research team from the School of Life Sciences of Tianjin University, led by Professor Chang Jin, have developed a versatile up-conversion optogenetic nanosystem based on a blue-light-mediated heterodimerization module and rare-earth up-conversion nanoparticles (UCNs). The UCNs worked as a nanotransducer to convert external near-infrared (NIR) light to local blue light to non-invasively activate photoreceptors for optogenetic manipulation in vivo. The research is expected to provide a new minimally invasive treatment for malignant tumors. The research paper, Near-Infrared Light Triggered Up-conversion Optogenetic Nanosystem for Cancer Therapy, was published in ACS Nano, an internationally famous nano-science journal.
Optogenetic manipulation has become one of the most alluring techniques in the biotechnology field in the new century. However, the technology was unable to achieve its clinical function of an implantation of a visible light source required in the human body, without damaging an individual’s health. Alternatively, wearing wire line equipment was unpractical, for it impeded people’s movement.